[EKSU, Ado-Ekiti] ENG 282: Engineering Mathematics II
1
Learning Track Courses
Complex Numbers - Mathematical Methods (Undergraduate Advanced)Do you want to learn how to work with numbers that go beyond the real line? Do you want to understand the concepts of imaginary unit, conjugate, modulus, argument, and polar and exponential forms of complex numbers? Do you want to master the skills of performing algebraic and geometric operations on complex numbers using different methods and tools?
If you answered yes to any of these questions, then this course is for you!
In this course, you will learn how to:
- Define and classify complex numbers and their real and imaginary parts
- Perform addition, subtraction, multiplication, and division of complex numbers using the standard form a + bi
- Find the conjugate, modulus, and argument of a complex number and use them to compare and simplify complex numbers
- Represent complex numbers on the Argand plane and visualize their geometric properties and transformations
- Convert complex numbers from rectangular to polar and exponential forms and vice versa
- Use De-Moivre's theorem and Euler's formula to find the powers and roots of complex numbers in polar and exponential forms
- Use complex numbers to define and manipulate trigonometric and hyperbolic functions and their inverses
- Use complex numbers to define and manipulate logarithmic functions and their properties
- Use complex numbers to graph and solve equations of circles, lines, and other curves on the complex plane
This course is suitable for anyone who wants to learn or review the basics of complex numbers and their applications. It is especially useful for students and professionals in engineering, physics, computer science, cryptography, and other related fields.
By the end of this course, you will have a solid understanding of complex numbers and their operations. You will also be able to apply the knowledge and skills you gain to real-world problems and challenges that involve complex numbers.
Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Do you want to learn how to work with numbers that go beyond the real line? Do you want to understand the concepts of imaginary unit, conjugate, modulus, argument, and polar and exponential forms of complex numbers? Do you want to master the skills of performing algebraic and geometric operations on complex numbers using different methods and tools? If you answered yes to any of these questions, then this course is for you! In this course, you will learn how to: - Define and classify complex numbers and their real and imaginary parts - Perform addition, subtraction, multiplication, and division of complex numbers using the standard form a + bi - Find the conjugate, modulus, and argument of a complex number and use them to compare and simplify complex numbers - Represent complex numbers on the Argand plane and visualize their geometric properties and transformations - Convert complex numbers from rectangular to polar and exponential forms and vice versa - Use De-Moivre's theorem and Euler's formula to find the powers and roots of complex numbers in polar and exponential forms - Use complex numbers to define and manipulate trigonometric and hyperbolic functions and their inverses - Use complex numbers to define and manipulate logarithmic functions and their properties - Use complex numbers to graph and solve equations of circles, lines, and other curves on the complex plane This course is suitable for anyone who wants to learn or review the basics of complex numbers and their applications. It is especially useful for students and professionals in engineering, physics, computer science, cryptography, and other related fields. By the end of this course, you will have a solid understanding of complex numbers and their operations. You will also be able to apply the knowledge and skills you gain to real-world problems and challenges that involve complex numbers. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Partial Differentiation and Its Applications - Multivariable Calculus (Undergraduate Advanced)This course provides a complete guide to the calculus of several variables. It builds from the foundational concepts of multivariable functions, limits, and continuity to the core techniques of differentiation, including partial derivatives, the chain rule, and implicit differentiation. The material culminates in advanced topics such as Taylor's theorem for several variables and the use of Jacobians.
Multivariable calculus is the language of modern science, engineering, and economics. Its principles are used to model complex surfaces, analyse thermodynamic systems, create 3D computer graphics, and solve critical optimisation problems in business and finance. This is the mathematical toolkit for working with systems that have multiple interacting variables.
By the end of this course, you will be able to calculate partial derivatives, apply the multivariable chain rule, and find directional derivatives using the gradient vector. You will also be able to solve both unconstrained and constrained optimisation problems by finding extreme values and using the method of Lagrange multipliers, and apply these derivatives to find tangent planes to surfaces.
This course is for students who have completed a full single-variable calculus sequence. It is the standard curriculum for a multivariable calculus (Calculus III) module and is a direct prerequisite for the study of vector calculus, differential equations, and advanced courses in physics, engineering, and economics.
This course provides a complete guide to the calculus of several variables. It builds from the foundational concepts of multivariable functions, limits, and continuity to the core techniques of differentiation, including partial derivatives, the chain rule, and implicit differentiation. The material culminates in advanced topics such as Taylor's theorem for several variables and the use of Jacobians. Multivariable calculus is the language of modern science, engineering, and economics. Its principles are used to model complex surfaces, analyse thermodynamic systems, create 3D computer graphics, and solve critical optimisation problems in business and finance. This is the mathematical toolkit for working with systems that have multiple interacting variables. By the end of this course, you will be able to calculate partial derivatives, apply the multivariable chain rule, and find directional derivatives using the gradient vector. You will also be able to solve both unconstrained and constrained optimisation problems by finding extreme values and using the method of Lagrange multipliers, and apply these derivatives to find tangent planes to surfaces. This course is for students who have completed a full single-variable calculus sequence. It is the standard curriculum for a multivariable calculus (Calculus III) module and is a direct prerequisite for the study of vector calculus, differential equations, and advanced courses in physics, engineering, and economics.