CHE 305: Engineering Analysis I

Advanced engineering mathematics covering solid analytical geometry, integrals, scalar and vector fields, matrices and determinants and complex variables. Curated for third-year students of engineering at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

2

₦ 10,500.00

One-time payment

Enrolment valid for 12 months

Learning Track Courses

Analytic Geometry: Master 3D Coordinates and Quadric Surfaces
Learn to analyze the three-dimensional Euclidean space using coordinates and equations with pin-point precision. Designed for students, researchers, and professionals in fields such as engineering, computer graphics, physics, astronomy, medicine, biology, architecture, and building technology, this course provides a thorough understanding of coordinate systems, equations, and quadric surfaces. On completing this course, you will have mastered: - One-dimensional coordinate system and locating points - Two-dimensional coordinate system, lines, and curves - Conic sections and their equations - Three-dimensional coordinate system and quadric surfaces - Computer-aided visualization using Geogebra - Coordinate transformation and rotation - Equations in polar, cylindrical, and spherical coordinates Throughout the course, you'll engage with high-quality video lessons, completely-solved examples, free-hand sketching techniques, and computer-aided visualizations. Multiple-choice quizzes will keep you focused and help reinforce your learning. Prerequisites: This course is designed for first-year undergraduate students in engineering and sciences. Prior knowledge of basic trigonometric ratios, determinants, and elementary row operations on matrices is helpful but not required, as the course is designed to be accessible to learners with varying backgrounds. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.

Learn to analyze the three-dimensional Euclidean space using coordinates and equations with pin-point precision. Designed for students, researchers, and professionals in fields such as engineering, computer graphics, physics, astronomy, medicine, biology, architecture, and building technology, this course provides a thorough understanding of coordinate systems, equations, and quadric surfaces. On completing this course, you will have mastered: - One-dimensional coordinate system and locating points - Two-dimensional coordinate system, lines, and curves - Conic sections and their equations - Three-dimensional coordinate system and quadric surfaces - Computer-aided visualization using Geogebra - Coordinate transformation and rotation - Equations in polar, cylindrical, and spherical coordinates Throughout the course, you'll engage with high-quality video lessons, completely-solved examples, free-hand sketching techniques, and computer-aided visualizations. Multiple-choice quizzes will keep you focused and help reinforce your learning. Prerequisites: This course is designed for first-year undergraduate students in engineering and sciences. Prior knowledge of basic trigonometric ratios, determinants, and elementary row operations on matrices is helpful but not required, as the course is designed to be accessible to learners with varying backgrounds. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.

Multiple Integration and Its Applications
Multiple integration; line, surface and volume integrals.

Multiple integration; line, surface and volume integrals.

Calculus of Scalar and Vector Fields
Do you want to learn how to manipulate and analyze scalar and vector fields using advanced calculus techniques? Do you want to understand the concepts and methods of scalar and vector products, gradient, divergence, curl, and Laplacian operators? Do you want to apply the principles of vector analysis to solve problems in physics, engineering, and other disciplines? If you answered yes to any of these questions, then this course is for you! In this course, you will learn the fundamentals of calculus of scalar and vector fields, which is the branch of mathematics that deals with functions and operators that map points in space to scalars or vectors. You will learn how to use different notations and conventions to express scalar and vector fields, such as Einstein's summation, Kronecker delta, and Levi-Civita symbols. You will learn how to perform scalar and vector products of vectors, which are useful for measuring angles, areas, and volumes. You will learn how to compute and interpret the gradient of a scalar field, which measures the rate and direction of change of a scalar function. You will learn how to compute and interpret the divergence and curl of a vector field, which measure the sources and vortices of a vector field. You will also learn how to use the Laplacian operator, which combines the divergence and the gradient, and is useful for studying heat conduction, electrostatics, and fluid dynamics. This course will equip you with the skills and knowledge to solve various problems involving scalar and vector fields. You will be able to apply the concepts and methods of calculus of scalar and vector fields to fields such as physics, engineering, chemistry, biology, and more. You will also be able to appreciate the power of vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, which relate the integrals of scalar and vector fields over different domains. By the end of this course, you will be able to: - Define and explain the meaning of scalars, vectors, and tensors - Identify and use different notations and conventions for scalar and vector fields - Perform scalar and vector products of vectors and calculate angles, areas, and volumes - Compute and interpret the gradient of a scalar field and its properties - Compute and interpret the divergence and curl of a vector field and their properties - Compute and interpret the Laplacian of a scalar or a vector field and its applications - Use different coordinate systems and bases to express scalar and vector fields and operators - Compute and interpret the gradient, divergence, curl, and Laplacian in orthogonal curvilinear coordinates - Recognize and use some special curvilinear coordinates, such as cylindrical and spherical coordinates - Apply the vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, to relate the integrals of scalar and vector fields over different domains Created for students, engineers, scientists, and anyone passionate about learning the calculus of scalar and vector fields, this course assumes a basic background in calculus, linear algebra, and vector algebra. With engaging video lessons, interactive quizzes, practice problems, and supportive peer interactions, you'll embark on a journey of discovery and mastery like never before. Seize the opportunity to advance your mathematical skills and unlock new problem-solving possibilities with an enrolment right away!

Do you want to learn how to manipulate and analyze scalar and vector fields using advanced calculus techniques? Do you want to understand the concepts and methods of scalar and vector products, gradient, divergence, curl, and Laplacian operators? Do you want to apply the principles of vector analysis to solve problems in physics, engineering, and other disciplines? If you answered yes to any of these questions, then this course is for you! In this course, you will learn the fundamentals of calculus of scalar and vector fields, which is the branch of mathematics that deals with functions and operators that map points in space to scalars or vectors. You will learn how to use different notations and conventions to express scalar and vector fields, such as Einstein's summation, Kronecker delta, and Levi-Civita symbols. You will learn how to perform scalar and vector products of vectors, which are useful for measuring angles, areas, and volumes. You will learn how to compute and interpret the gradient of a scalar field, which measures the rate and direction of change of a scalar function. You will learn how to compute and interpret the divergence and curl of a vector field, which measure the sources and vortices of a vector field. You will also learn how to use the Laplacian operator, which combines the divergence and the gradient, and is useful for studying heat conduction, electrostatics, and fluid dynamics. This course will equip you with the skills and knowledge to solve various problems involving scalar and vector fields. You will be able to apply the concepts and methods of calculus of scalar and vector fields to fields such as physics, engineering, chemistry, biology, and more. You will also be able to appreciate the power of vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, which relate the integrals of scalar and vector fields over different domains. By the end of this course, you will be able to: - Define and explain the meaning of scalars, vectors, and tensors - Identify and use different notations and conventions for scalar and vector fields - Perform scalar and vector products of vectors and calculate angles, areas, and volumes - Compute and interpret the gradient of a scalar field and its properties - Compute and interpret the divergence and curl of a vector field and their properties - Compute and interpret the Laplacian of a scalar or a vector field and its applications - Use different coordinate systems and bases to express scalar and vector fields and operators - Compute and interpret the gradient, divergence, curl, and Laplacian in orthogonal curvilinear coordinates - Recognize and use some special curvilinear coordinates, such as cylindrical and spherical coordinates - Apply the vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, to relate the integrals of scalar and vector fields over different domains Created for students, engineers, scientists, and anyone passionate about learning the calculus of scalar and vector fields, this course assumes a basic background in calculus, linear algebra, and vector algebra. With engaging video lessons, interactive quizzes, practice problems, and supportive peer interactions, you'll embark on a journey of discovery and mastery like never before. Seize the opportunity to advance your mathematical skills and unlock new problem-solving possibilities with an enrolment right away!

Algebra of Matrices, Determinants and Matrix Inverses
Meaning, properties and operations on matrices, determinants and matrix inverses.

Meaning, properties and operations on matrices, determinants and matrix inverses.

Systems of Linear Equations
Solutions and applications of systems of linear equations.

Solutions and applications of systems of linear equations.

Eigenvalues, Eigenvectors and Diagonalization of Matrices
Meaning, properties and applications of eigenvalues, eigenvectors and diagonalization of matrices.

Meaning, properties and applications of eigenvalues, eigenvectors and diagonalization of matrices.

Complex Variables
Complex numbers, variables, functions and series in the complex plane.

Complex numbers, variables, functions and series in the complex plane.