Worked examples (5) - Vector Algebra | Vector Algebra and Foundational Geometry - Vectors (Undergraduate Foundation)

1 year ago More worked examples on vector algebra and its geometric applications.
SPONSORED
Get Personalized Tutoring Now
Get Personalized Tutoring Now
Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Enroll for the entire course below for full access to all videos, notes, quizzes, exercises, projects, a chat room to interact with the instructor and other learners across the world, and lots more.
Vector Algebra and Foundational Geometry - Vectors (Undergraduate Foundation)
Vector Algebra and Foundational Geometry - Vectors (Undergraduate Foundation)
This course provides a comprehensive, first-principles guide to vector analysis. We begin with the essential definitions, distinguishing between scalars, vectors, and various vector types. You will then master the core rules of vector algebra—including the triangle and parallelogram laws of addition and scalar multiplication—before applying them to prove geometric properties of polygons. The curriculum progresses logically through key concepts such as position vectors, resolving vectors into Cartesian components, the division of lines, vector projections, and the calculation of centroids. The true power of vectors lies in their ability to connect abstract algebra to tangible geometry. This course is built around that connection, with a heavy emphasis on practical application. Through dozens of meticulously worked examples, you will move beyond theory and develop a deep, intuitive understanding of how to represent and solve complex geometric problems, building the confidence and skill needed for more advanced study. This programme is designed for students in late secondary school (such as A-Level or IB) and first-year university students in physics, engineering, mathematics, and computer science. It is the perfect starting point for anyone new to the subject and an invaluable refresher for those who need to solidify their foundational knowledge before tackling more advanced topics like linear algebra or vector calculus.

This course provides a comprehensive, first-principles guide to vector analysis. We begin with the essential definitions, distinguishing between scalars, vectors, and various vector types. You will then master the core rules of vector algebra—including the triangle and parallelogram laws of addition and scalar multiplication—before applying them to prove geometric properties of polygons. The curriculum progresses logically through key concepts such as position vectors, resolving vectors into Cartesian components, the division of lines, vector projections, and the calculation of centroids. The true power of vectors lies in their ability to connect abstract algebra to tangible geometry. This course is built around that connection, with a heavy emphasis on practical application. Through dozens of meticulously worked examples, you will move beyond theory and develop a deep, intuitive understanding of how to represent and solve complex geometric problems, building the confidence and skill needed for more advanced study. This programme is designed for students in late secondary school (such as A-Level or IB) and first-year university students in physics, engineering, mathematics, and computer science. It is the perfect starting point for anyone new to the subject and an invaluable refresher for those who need to solidify their foundational knowledge before tackling more advanced topics like linear algebra or vector calculus.

This course is also part of the following learning tracks. You can join a track to gain comprehensive knowledge across related courses.
[OAU, Ife] MTH 104: Vectors
[OAU, Ife] MTH 104: Vectors
This comprehensive learning track guides you through the complete world of vector analysis. We begin with the fundamentals of vector algebra and its application to foundational geometry. You will then master scalar, vector, and triple products before using them to construct the vector equations of lines, planes, and conics. The journey culminates in advanced topics, including vector calculus, its applications in classical mechanics, and an introduction to differential geometry. Vectors are the essential language used to describe our physical world, making their mastery non-negotiable for any serious student of science or engineering. This track is designed to build your intuition for spatial reasoning and equip you with a powerful problem-solving toolkit. You will see direct applications in mechanics, analyzing forces and motion; in geometry, calculating angles and distances; and in calculus, modeling dynamic change over time. While this track is tailored to the first-year university curriculum for MTH 104 at Obafemi Awolowo University, Ile-Ife, Nigeria, it is an invaluable resource for a wide range of learners. It is ideal for any undergraduate student in mathematics, physics, engineering, or computer science seeking a comprehensive understanding of vector analysis. Furthermore, it serves as an excellent and thorough refresher for professionals who wish to solidify their foundational knowledge of this critical subject.

This comprehensive learning track guides you through the complete world of vector analysis. We begin with the fundamentals of vector algebra and its application to foundational geometry. You will then master scalar, vector, and triple products before using them to construct the vector equations of lines, planes, and conics. The journey culminates in advanced topics, including vector calculus, its applications in classical mechanics, and an introduction to differential geometry. Vectors are the essential language used to describe our physical world, making their mastery non-negotiable for any serious student of science or engineering. This track is designed to build your intuition for spatial reasoning and equip you with a powerful problem-solving toolkit. You will see direct applications in mechanics, analyzing forces and motion; in geometry, calculating angles and distances; and in calculus, modeling dynamic change over time. While this track is tailored to the first-year university curriculum for MTH 104 at Obafemi Awolowo University, Ile-Ife, Nigeria, it is an invaluable resource for a wide range of learners. It is ideal for any undergraduate student in mathematics, physics, engineering, or computer science seeking a comprehensive understanding of vector analysis. Furthermore, it serves as an excellent and thorough refresher for professionals who wish to solidify their foundational knowledge of this critical subject.

[NUC Core] GET 209: Engineering Mathematics I
[NUC Core] GET 209: Engineering Mathematics I
Master the mathematical language of engineering. This programme delivers the complete analytical toolkit required for a successful engineering career, covering single-variable calculus, multivariable calculus, linear algebra, and vector analysis. It provides the essential foundation for all subsequent engineering courses. This programme is for second-year undergraduate students across all engineering disciplines. It delivers the official NUC CCMAS curriculum for Engineering Mathematics, providing the core training required for advanced modules in mechanics, thermodynamics, and circuit theory. Model and analyse complex physical systems using calculus, linear algebra, and vector analysis. You will be equipped to solve problems in dynamics, statics, and field theory, providing the quantitative proficiency required for advanced engineering study and professional practice.

Master the mathematical language of engineering. This programme delivers the complete analytical toolkit required for a successful engineering career, covering single-variable calculus, multivariable calculus, linear algebra, and vector analysis. It provides the essential foundation for all subsequent engineering courses. This programme is for second-year undergraduate students across all engineering disciplines. It delivers the official NUC CCMAS curriculum for Engineering Mathematics, providing the core training required for advanced modules in mechanics, thermodynamics, and circuit theory. Model and analyse complex physical systems using calculus, linear algebra, and vector analysis. You will be equipped to solve problems in dynamics, statics, and field theory, providing the quantitative proficiency required for advanced engineering study and professional practice.