Continuity of Functions - Single-Variable Calculus (Undergraduate Foundation)

This course provides a focused and rigorous examination of continuity, a fundamental property of functions that underpins the whole of differential and integral calculus. We move from an intuitive understanding of "unbroken" graphs to the formal, limit-based definition of continuity. The course systematically explores the different types of discontinuities and the powerful theorems that apply only to continuous functions. A command of continuity is essential for understanding why calculus works. This concept ensures that functions are predictable and well-behaved, a necessary condition for modeling real-world phenomena and for the validity of the major theorems of calculus. It is the bridge between the concept of a limit and the concept of a derivative, explaining why a function must be continuous to be differentiable. By the end of this course, you will be able to use the three-part definition to test for continuity at a point, identify and classify removable, jump, and infinite discontinuities, and apply the Intermediate Value Theorem and the Extreme Value Theorem to analyse function behavior on a closed interval. This course is designed for first-year undergraduates in science, technology, engineering, and mathematics who have completed a course on limits. It is a critical prerequisite for the study of differentiability and is essential for any student seeking a deep understanding of calculus theory.

4

5 hrs

Payment required for enrolment
Enrolment valid for 12 months
This course is also part of the following learning tracks. You may join a track to gain comprehensive knowledge across related courses.
[OAU, Ife] MTH 201: Mathematical Methods I
[OAU, Ife] MTH 201: Mathematical Methods I
Comprehensive treatise of advanced calculus covering limits, continuity and differentiability, infinite sequences and series, partial differentiation, numerical methods and ordinary differential equations. Curated for second-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

Comprehensive treatise of advanced calculus covering limits, continuity and differentiability, infinite sequences and series, partial differentiation, numerical methods and ordinary differential equations. Curated for second-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

[FUTA, Akure] MTS 102: Introductory Mathematics II
[FUTA, Akure] MTS 102: Introductory Mathematics II
This learning track is structured for first-year students at the Federal University of technology, Akure (FUTA) and mirrors the standard second-semester coverage of elementary calculus. It begins with single-variable functions and their graphs, then walks learners through limits, continuity, differentiation techniques, and curve sketching—just as covered in the official MTS 102 outline. You’ll also explore anti-derivatives and integration, learning both the techniques and how to apply them to solve practical problems in science and engineering contexts. Everything is broken down into short, focused video lessons that keep things clear and manageable, especially for students who might be engaging this content for the first time. If you're not a FUTA student but need to build a solid foundation in these same topics, this track can serve you just as well. The structure and explanations are universal, ensuring that learners with similar academic goals can benefit fully.

This learning track is structured for first-year students at the Federal University of technology, Akure (FUTA) and mirrors the standard second-semester coverage of elementary calculus. It begins with single-variable functions and their graphs, then walks learners through limits, continuity, differentiation techniques, and curve sketching—just as covered in the official MTS 102 outline. You’ll also explore anti-derivatives and integration, learning both the techniques and how to apply them to solve practical problems in science and engineering contexts. Everything is broken down into short, focused video lessons that keep things clear and manageable, especially for students who might be engaging this content for the first time. If you're not a FUTA student but need to build a solid foundation in these same topics, this track can serve you just as well. The structure and explanations are universal, ensuring that learners with similar academic goals can benefit fully.

[UNILAG, Akoka] MTH 102: Elementary Mathematics II
[UNILAG, Akoka] MTH 102: Elementary Mathematics II
This learning track is designed to guide first-year students at the University Of Lagos through key concepts in calculus, beginning with the fundamentals of single-variable functions and their graphs. It builds gradually into the core topics of limits, continuity, and differentiability, with each course tailored to simplify these foundational ideas for early learners. The focus is not just on theory but also on building the skill to solve problems confidently, especially those typically encountered in university-level exams. You’ll move from understanding the concept of a limit to mastering how derivatives work and how to apply them to sketch curves and analyze function behavior. Although built for UNILAG students, this track is suitable for anyone looking to strengthen their understanding of introductory calculus at the university level. Whether you're preparing for school assessments or seeking a solid refresher, this track will help you follow a structured path.

This learning track is designed to guide first-year students at the University Of Lagos through key concepts in calculus, beginning with the fundamentals of single-variable functions and their graphs. It builds gradually into the core topics of limits, continuity, and differentiability, with each course tailored to simplify these foundational ideas for early learners. The focus is not just on theory but also on building the skill to solve problems confidently, especially those typically encountered in university-level exams. You’ll move from understanding the concept of a limit to mastering how derivatives work and how to apply them to sketch curves and analyze function behavior. Although built for UNILAG students, this track is suitable for anyone looking to strengthen their understanding of introductory calculus at the university level. Whether you're preparing for school assessments or seeking a solid refresher, this track will help you follow a structured path.

Course Chapters

1. Introduction
4

Continuity (at an interior point, at an endpoint, on an interval) of real-valued functions - graphical illustration, formal and informal definitions.

Chapter lessons

1-1. Informal definition
16:07

Informal definition of continuity.

1-2. Continuity at an interior point
13:34

Continuity at an interior point of the domain of a function.

1-3. Continuity at an endpoint
8:53

Continuity at an endpoint of the domain of a function.

1-4. Continuity on an interval
17:22

Continuity of a function on an interval in its domain.

2. Continuous Functions
1
4

Examples of continuous functions, worked problems on continuity.

Chapter lessons

2-1. Examples of continuous functions
24:12

Some examples of functions that are continuous everywhere in their domain of definition.

3. Types of Discontinuity
1
1

Various types of discontinuities - meaning and examples.

Chapter lessons

3-1. Removable discontinuities
10:52

Meaning of removable and non-removable discontinuities.

4. Theorems on Continuous Functions
2
1

Understanding the max-min theorem and the intermediate-value theorem.

Chapter lessons

4-1. The max-min theorem
11:12

Understanding the max-min theorem.

4-2. The intermediate-value theorem
11:20

Understanding the intermediate-value theorem.