Equilibrium of Rigid Bodies - Engineering Mechanics (Undergraduate Advanced)

Equilibrium is the foundation of all structural and mechanical analysis. This course provides a rigorous study of the equilibrium of rigid bodies in two and three dimensions. It covers reactions, equilibrium equations, constraints, and statical determinacy, supported by extensive worked examples. Engineers, architects, and applied scientists constantly rely on equilibrium principles to design safe, efficient, and reliable systems. From bridges and buildings to machines and vehicles, every stable structure depends on correct modelling of supports, forces, and constraints. Mastery of equilibrium ensures accuracy in analysis and prevents costly or dangerous failures. By completing this course, you will be able to draw free-body diagrams, apply equilibrium equations in 2D and 3D, and classify and analyse different support and constraint conditions. You will understand when a system is properly constrained, over-constrained, or indeterminate, and you will have practical experience solving a wide range of equilibrium problems. This course is intended for undergraduate students in mechanical, civil, and structural engineering, but it is also useful to anyone studying applied mechanics at an advanced level. It provides both a theoretical foundation and practical problem-solving skills valuable to practising engineers, technical instructors, or anyone needing precise understanding of equilibrium in rigid body mechanics.

33 hrs

Enrolment valid for 12 months
This course is also part of the following learning tracks. You may join a track to gain comprehensive knowledge across related courses.
GET 207: Applied Mechanics
GET 207: Applied Mechanics
Master the non-negotiable principles of Engineering Mechanics. This track delivers a rigorous, complete programme in statics and dynamics, built to the NUC GET 207 core curriculum. It moves methodically from force systems and equilibrium to the kinematics of rigid bodies and the kinetics of particles. This is the foundation of all structural and mechanical analysis. This programme is for first and second-year undergraduate engineering students. It is an essential requirement for students in Mechanical, Civil, Structural, Aerospace, and Mechatronics engineering. A working knowledge of introductory physics and calculus is assumed. On completion, you will be able to analyse and solve complex problems in statics and particle dynamics. You will draw free-body diagrams, apply equilibrium equations, analyse trusses and frames, and solve motion problems using Newton's laws, work-energy, and momentum methods. This programme prepares you for advanced courses, particularly Mechanics of Materials, and future professional engineering practice.

Master the non-negotiable principles of Engineering Mechanics. This track delivers a rigorous, complete programme in statics and dynamics, built to the NUC GET 207 core curriculum. It moves methodically from force systems and equilibrium to the kinematics of rigid bodies and the kinetics of particles. This is the foundation of all structural and mechanical analysis. This programme is for first and second-year undergraduate engineering students. It is an essential requirement for students in Mechanical, Civil, Structural, Aerospace, and Mechatronics engineering. A working knowledge of introductory physics and calculus is assumed. On completion, you will be able to analyse and solve complex problems in statics and particle dynamics. You will draw free-body diagrams, apply equilibrium equations, analyse trusses and frames, and solve motion problems using Newton's laws, work-energy, and momentum methods. This programme prepares you for advanced courses, particularly Mechanics of Materials, and future professional engineering practice.

See more
MEE 205: Engineering Mechanics - Statics
MEE 205: Engineering Mechanics - Statics
Master the science of structural stability. This programme provides a complete education in engineering statics, covering the analysis of forces, moments, and equilibrium in rigid bodies. It delivers the non-negotiable principles required to design safe and reliable structures. This learning track is for first or second-year undergraduate students in Civil, Mechanical, Aerospace, and Structural Engineering. It is the foundational mechanics course upon which all subsequent design and analysis subjects are built. Analyse the forces within any static structure, from simple trusses to complex machines. You will master free-body diagrams, equilibrium equations, and structural analysis methods. This programme equips you with the core analytical skills for a career in structural, mechanical, or civil design.

Master the science of structural stability. This programme provides a complete education in engineering statics, covering the analysis of forces, moments, and equilibrium in rigid bodies. It delivers the non-negotiable principles required to design safe and reliable structures. This learning track is for first or second-year undergraduate students in Civil, Mechanical, Aerospace, and Structural Engineering. It is the foundational mechanics course upon which all subsequent design and analysis subjects are built. Analyse the forces within any static structure, from simple trusses to complex machines. You will master free-body diagrams, equilibrium equations, and structural analysis methods. This programme equips you with the core analytical skills for a career in structural, mechanical, or civil design.

See more

Course Chapters

1. Introduction
5
Welcome to the course and review of fundamental concepts - internal and external forces, equilibrium conditions for rigid bodies, use of free-body diagrams, etc.
Concept Overviews
5 Lessons
1:21:38
2. 2D Reactions
4
2
Determining force and moment reactions at contacts, connections and supports for a rigid body under the action of co-planar forces - in order to produce its free-body diagram.
Concept Overviews
4 Lessons
59:46
Problem Walkthroughs
2 Lessons
19:23
3. 2D Equilibrium Equations (1)
1
24
General analysis of equilibrium of rigid bodies in two dimensions.
Concept Overviews
1 Lesson
34:50
Problem Walkthroughs
24 Lessons
9:14:30
4. 2D Equilibrium Equations (2)
2
8
Analysis of special cases of equilibrium of rigid bodies in two dimensions - equilibrium under the action of only two or three forces.
Concept Overviews
2 Lessons
26:37
Problem Walkthroughs
8 Lessons
3:13:45
5. 2D Constraints and Statical Determinacy
4
1
Different conditions of constraints on rigid bodies in two dimensions and their statical determinacy.
Concept Overviews
4 Lessons
1:04:57
Problem Walkthroughs
1 Lesson
48:02
6. 3D Reactions
6
2
Determining force and moment reactions at contacts, connections and supports for a rigid body under the action of three-dimensional forces - in order to produce its free-body diagram.
Concept Overviews
6 Lessons
1:15:51
Problem Walkthroughs
2 Lessons
24:02
7. 3D Equilibrium Equations
1
12
Analysis of equilibrium of rigid bodies in three dimensions.
Concept Overviews
1 Lesson
15:29
Problem Walkthroughs
12 Lessons
7:09:35
8. 3D Constraints and Statical Determinacy
2
Different conditions of constraints on rigid bodies in three dimensions and their statical determinacy.
Concept Overviews
2 Lessons
17:15