Introduction to Differential Geometry - Vectors (Undergraduate Foundation)
1
MTH 210: Vector AnalysisVector analysis is the mathematical backbone of classical mechanics, electromagnetism, and fluid dynamics. This learning track delivers the complete NUC CCMAS MTH 210 curriculum, rigorously progressing from fundamental vector algebra to the advanced differential and integral calculus of scalar and vector fields used in complex engineering and scientific modelling.
This programme is targeted at undergraduates in engineering, physics, mathematics, and computer science. It provides the essential mathematical toolkit for students entering disciplines that rely on applied mathematics and spatial analysis, and serves as a rigorous refresher for professionals needing to solidify their command of vector principles.
You will master the full spectrum of vector operations including dot, cross, and triple products, and apply them to solve geometric problems and vector equations. You will acquire the skills to analyze the differential geometry of curves using the Frenet-Serret framework and apply the powerful gradient, divergence, curl, and Laplacian operators in various coordinate systems. Completion establishes the critical mathematical foundation demanded for advanced studies in continuum mechanics, electrodynamics, and theoretical physics.
Vector analysis is the mathematical backbone of classical mechanics, electromagnetism, and fluid dynamics. This learning track delivers the complete NUC CCMAS MTH 210 curriculum, rigorously progressing from fundamental vector algebra to the advanced differential and integral calculus of scalar and vector fields used in complex engineering and scientific modelling. This programme is targeted at undergraduates in engineering, physics, mathematics, and computer science. It provides the essential mathematical toolkit for students entering disciplines that rely on applied mathematics and spatial analysis, and serves as a rigorous refresher for professionals needing to solidify their command of vector principles. You will master the full spectrum of vector operations including dot, cross, and triple products, and apply them to solve geometric problems and vector equations. You will acquire the skills to analyze the differential geometry of curves using the Frenet-Serret framework and apply the powerful gradient, divergence, curl, and Laplacian operators in various coordinate systems. Completion establishes the critical mathematical foundation demanded for advanced studies in continuum mechanics, electrodynamics, and theoretical physics.
Course Chapters
1. Introduction1
Welcome to the course and outline of course.
Chapter lessons
1-1. Welcome
Welcome to the course and outline of course.
2. Differential Geometry43
Arc length and curvature of parametric curves; tangential, normal and binormal vectors to a parametric curve; osculating, normal and rectifying planes to a parametric curve; Frenet-Serret formulas.
Chapter lessons
2-1. Arc length and curvature
Arc length, tangential vector and curvature of a parametric curve.
2-2. Normal and binormal vectors
Normal and binormal vectors to a parametric curve.
2-3. Osculating, normal and rectifying planes
Osculating, normal and rectifying planes of a parametric curve.
2-4. Frenet-Serret formulas
The Frenet-Serret formulas and their applications.