Kinetics of Systems of Particles - Engineering Mechanics (Undergraduate Advanced)

Analysis of kinetics of generalized systems of particles by Newton's second law, work-energy principle and impulse-and-momentum methods.

9 hrs

Enrolment valid for 12 months
This course is also part of the following learning tracks. You may join a track to gain comprehensive knowledge across related courses.
GET 207: Applied Mechanics
GET 207: Applied Mechanics
Master the non-negotiable principles of Engineering Mechanics. This track delivers a rigorous, complete programme in statics and dynamics, built to the NUC GET 207 core curriculum. It moves methodically from force systems and equilibrium to the kinematics of rigid bodies and the kinetics of particles. This is the foundation of all structural and mechanical analysis. This programme is for first and second-year undergraduate engineering students. It is an essential requirement for students in Mechanical, Civil, Structural, Aerospace, and Mechatronics engineering. A working knowledge of introductory physics and calculus is assumed. On completion, you will be able to analyse and solve complex problems in statics and particle dynamics. You will draw free-body diagrams, apply equilibrium equations, analyse trusses and frames, and solve motion problems using Newton's laws, work-energy, and momentum methods. This programme prepares you for advanced courses, particularly Mechanics of Materials, and future professional engineering practice.

Master the non-negotiable principles of Engineering Mechanics. This track delivers a rigorous, complete programme in statics and dynamics, built to the NUC GET 207 core curriculum. It moves methodically from force systems and equilibrium to the kinematics of rigid bodies and the kinetics of particles. This is the foundation of all structural and mechanical analysis. This programme is for first and second-year undergraduate engineering students. It is an essential requirement for students in Mechanical, Civil, Structural, Aerospace, and Mechatronics engineering. A working knowledge of introductory physics and calculus is assumed. On completion, you will be able to analyse and solve complex problems in statics and particle dynamics. You will draw free-body diagrams, apply equilibrium equations, analyse trusses and frames, and solve motion problems using Newton's laws, work-energy, and momentum methods. This programme prepares you for advanced courses, particularly Mechanics of Materials, and future professional engineering practice.

See more
MEE 206: Engineering Mechanics - Dynamics
MEE 206: Engineering Mechanics - Dynamics
Master the principles governing the motion of engineering systems. This learning track provides a complete education in dynamics, systematically building from the kinematics of particles to the kinetics of rigid bodies and culminating in an introduction to dynamic systems and vibration. You will learn to analyse and predict how mechanical systems behave under the influence of forces. This programme is for undergraduate students in mechanical, aerospace, civil, or related engineering disciplines. It is also essential for practising engineers and applied scientists who require a rigorous, first-principles command of dynamic analysis for their professional work. A prerequisite knowledge of statics, calculus, and vector algebra is assumed. Upon completion, you will possess the analytical tools to solve complex dynamics problems for particles and rigid bodies using force, energy, and momentum methods. This provides the essential foundation for advanced study in mechanical design, control systems, and structural analysis, and prepares you for demanding technical roles in the engineering sector.

Master the principles governing the motion of engineering systems. This learning track provides a complete education in dynamics, systematically building from the kinematics of particles to the kinetics of rigid bodies and culminating in an introduction to dynamic systems and vibration. You will learn to analyse and predict how mechanical systems behave under the influence of forces. This programme is for undergraduate students in mechanical, aerospace, civil, or related engineering disciplines. It is also essential for practising engineers and applied scientists who require a rigorous, first-principles command of dynamic analysis for their professional work. A prerequisite knowledge of statics, calculus, and vector algebra is assumed. Upon completion, you will possess the analytical tools to solve complex dynamics problems for particles and rigid bodies using force, energy, and momentum methods. This provides the essential foundation for advanced study in mechanical design, control systems, and structural analysis, and prepares you for demanding technical roles in the engineering sector.

See more

Course Chapters

1. Introduction
2
Introduction to and motivation for a dedicated study of the kinetics of systems of particles.
Concept Overviews
2 Lessons
39:19
2. Newton's Second Law
1
2
Generalized Newton's second law application to kinetics of systems of particles.
Concept Overviews
1 Lesson
18:36
Problem Walkthroughs
2 Lessons
1:32:52
3. Energy and Momentum Methods
1
Work-Energy principle and conservation of energy, impulse-momentum principle and conservation of momentum, for a system of particles.
Concept Overviews
1 Lesson
19:53
4. Steady Streams of Particles
5
3
Analysis of motion in a system of particles involving steady mass flow into or out of it.
Concept Overviews
5 Lessons
1:37:39
Problem Walkthroughs
3 Lessons
1:20:09
5. Systems Gaining or Losing Mass
2
1
Analysis of motion in a system of particles gaining or losing mass.
Concept Overviews
2 Lessons
40:37
Problem Walkthroughs
1 Lesson
12:43