Ordinary Differential Equations - Mathematical Methods (Undergraduate Advanced)
40 hrs
CHE 306: Engineering Analysis IIAdvanced engineering mathematics covering numerical and analytical methods of engineering analysis.
Curated for third-year students of engineering at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.
Advanced engineering mathematics covering numerical and analytical methods of engineering analysis. Curated for third-year students of engineering at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.
MTH 202: Elementary Differential EquationsMastering differential equations is essential for modelling dynamic systems in science and engineering. This learning track delivers the complete MTH 202 curriculum based on NUC CCMAS standards, equipping you with the mathematical command to describe motion, analyse electrical circuits, and predict rates of change across physical phenomena.
This programme is targeted at undergraduates in mathematics, physics, engineering, and chemistry who possess a strong background in single and multivariable calculus. It also serves professionals requiring a rigorous, method-focused refresher on fundamental mathematical modelling tools.
You will achieve competence in classifying equations and deploying solution methods for first-order, reducible higher-order, and general linear ordinary differential equations. You will learn to solve systems of linear ODEs and apply these techniques directly to real-world physical and technical problems. Completion establishes the necessary foundation for advanced studies in partial differential equations, control theory, and advanced physics.
Mastering differential equations is essential for modelling dynamic systems in science and engineering. This learning track delivers the complete MTH 202 curriculum based on NUC CCMAS standards, equipping you with the mathematical command to describe motion, analyse electrical circuits, and predict rates of change across physical phenomena. This programme is targeted at undergraduates in mathematics, physics, engineering, and chemistry who possess a strong background in single and multivariable calculus. It also serves professionals requiring a rigorous, method-focused refresher on fundamental mathematical modelling tools. You will achieve competence in classifying equations and deploying solution methods for first-order, reducible higher-order, and general linear ordinary differential equations. You will learn to solve systems of linear ODEs and apply these techniques directly to real-world physical and technical problems. Completion establishes the necessary foundation for advanced studies in partial differential equations, control theory, and advanced physics.
MTH 201: Mathematical Methods IThis learning track delivers the complete mathematical toolkit required for a university-level science, engineering, or computing degree. It systematically covers the entire MTH 201 curriculum, building from the foundational principles of single-variable calculus - functions, limits, continuity, and differentiability - to the advanced methods of multivariable calculus, infinite series, numerical methods, and ordinary differential equations. This is the definitive preparation for advanced quantitative study.
This programme is designed for second-year students offering MTH 201 at Obafemi Awolowo University, Ile-Ife, Nigeria. It is also helpful for any student in a STEM field - including physics, engineering, and computer science - who requires a rigorous and comprehensive command of calculus and its applications.
This track delivers a full skill set in mathematical analysis and applied problem-solving. Graduates will be able to solve a wide range of problems, from optimising multivariable functions to modelling dynamic systems with differential equations and testing the convergence of infinite series. This programme directly prepares students for success in advanced courses in vector calculus, partial differential equations, and real analysis, providing the necessary foundation for a career in engineering, data science, or theoretical physics.
This learning track delivers the complete mathematical toolkit required for a university-level science, engineering, or computing degree. It systematically covers the entire MTH 201 curriculum, building from the foundational principles of single-variable calculus - functions, limits, continuity, and differentiability - to the advanced methods of multivariable calculus, infinite series, numerical methods, and ordinary differential equations. This is the definitive preparation for advanced quantitative study. This programme is designed for second-year students offering MTH 201 at Obafemi Awolowo University, Ile-Ife, Nigeria. It is also helpful for any student in a STEM field - including physics, engineering, and computer science - who requires a rigorous and comprehensive command of calculus and its applications. This track delivers a full skill set in mathematical analysis and applied problem-solving. Graduates will be able to solve a wide range of problems, from optimising multivariable functions to modelling dynamic systems with differential equations and testing the convergence of infinite series. This programme directly prepares students for success in advanced courses in vector calculus, partial differential equations, and real analysis, providing the necessary foundation for a career in engineering, data science, or theoretical physics.
Course Chapters