Welcome - Introduction | Sequences and Series - Mathematics (Undergraduate Foundation)

17 hours ago A direct statement on the course's purpose and structure. This lesson explains the importance of mathematical progressions in modelling patterns of growth, decay, and summation.
SPONSORED
Get Personalized Tutoring Now
Get Personalized Tutoring Now
Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Enroll for the entire course below for full access to all videos, notes, quizzes, exercises, projects, a chat room to interact with the instructor and other learners across the world, and lots more.
Sequences and Series - Mathematics (Undergraduate Foundation)
Sequences and Series - Mathematics (Undergraduate Foundation)
This course provides a complete treatise of mathematical progressions. It formally defines sequences and series, with a specific focus on Arithmetic Progressions (APs) and Geometric Progressions (GPs). This material is the foundation for analysing patterns of growth, decay, and summation. These principles are foundational to finance, computer science, and physics. The course provides the tools to calculate compound interest, analyse algorithm complexity, and model physical phenomena. Mastery is required for calculus and financial mathematics. By the end of this course, you will be able to differentiate between sequences and series, apply all standard formulas for the nth term and sum of Arithmetic and Geometric Progressions, calculate the sum to infinity for a convergent GP, and solve problems involving arithmetic and geometric means. This course is designed for first-year university students in mathematics, economics, finance, and engineering. It is a mandatory prerequisite for the study of calculus and provides an essential foundation for financial modelling and algorithm analysis.

This course provides a complete treatise of mathematical progressions. It formally defines sequences and series, with a specific focus on Arithmetic Progressions (APs) and Geometric Progressions (GPs). This material is the foundation for analysing patterns of growth, decay, and summation. These principles are foundational to finance, computer science, and physics. The course provides the tools to calculate compound interest, analyse algorithm complexity, and model physical phenomena. Mastery is required for calculus and financial mathematics. By the end of this course, you will be able to differentiate between sequences and series, apply all standard formulas for the nth term and sum of Arithmetic and Geometric Progressions, calculate the sum to infinity for a convergent GP, and solve problems involving arithmetic and geometric means. This course is designed for first-year university students in mathematics, economics, finance, and engineering. It is a mandatory prerequisite for the study of calculus and provides an essential foundation for financial modelling and algorithm analysis.

This course is also part of the following learning track. You can join the track to gain comprehensive knowledge across related courses.
MTH 101: Elementary Mathematics I - Algebra and Trigonometry
MTH 101: Elementary Mathematics I - Algebra and Trigonometry
Master the mathematics every scientist, engineer, and computer scientist must know. This track covers the NUC Core syllabus for MTH 101: Elementary Mathematics I. From set theory and sequences to trigonometry and complex numbers, you will gain the exact tools used in higher mathematics, algorithm design, data analysis, physics, and engineering. This programme is for first-year university students in mathematics, computer science, engineering, or physics, as well as serious learners preparing for undergraduate study. It also serves professionals who need a rigorous mathematical foundation for technical fields. By the end, you will handle formal set notation, progressions, quadratic models, combinatorics, induction proofs, binomial expansions, trigonometric analysis, and complex arithmetic. You will be equipped to solve real problems in science, engineering, computing, and finance, and ready for advanced study in calculus, statistics, and applied mathematics.

Master the mathematics every scientist, engineer, and computer scientist must know. This track covers the NUC Core syllabus for MTH 101: Elementary Mathematics I. From set theory and sequences to trigonometry and complex numbers, you will gain the exact tools used in higher mathematics, algorithm design, data analysis, physics, and engineering. This programme is for first-year university students in mathematics, computer science, engineering, or physics, as well as serious learners preparing for undergraduate study. It also serves professionals who need a rigorous mathematical foundation for technical fields. By the end, you will handle formal set notation, progressions, quadratic models, combinatorics, induction proofs, binomial expansions, trigonometric analysis, and complex arithmetic. You will be equipped to solve real problems in science, engineering, computing, and finance, and ready for advanced study in calculus, statistics, and applied mathematics.

See more