Geometric meaning - Scalar Triple Products | Vector Products and Vector Equations of Geometries - Introduction to Vectors

1 year ago Geometric meaning of the scalar triple product of three vectors as the volume of some parallelepiped.
SPONSORED
Get Personalized Tutoring Now
Get Personalized Tutoring Now
Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Struggling with a tough concept or looking to advance your skills? Our expert tutors offer one-to-one guidance tailored to your unique needs. Get instant support, clear explanations, and practical strategies to master even the most challenging subjects. With flexible scheduling and customized learning plans, success is just a session away. Book your personalized tutoring today and start achieving your academic goals!

Enroll for the entire course below for full access to all videos, notes, quizzes, exercises, projects, a chat room to interact with the instructor and other learners across the world, and lots more.
Vector Products and Vector Equations of Geometries - Introduction to Vectors
Vector Products and Vector Equations of Geometries - Introduction to Vectors
Vector products and vector equations (standard and parametric) equations of geometries.

Vector products and vector equations (standard and parametric) equations of geometries.

This course is also part of the following learning tracks. You can join a track to gain comprehensive knowledge across related courses.
[OAU, Ife] MTH 104: Vectors
[OAU, Ife] MTH 104: Vectors
Introduction to vectors, covering vector algebra, geometry, products, vector equations of geometries, vector differentiation, integration and their applications to mechanics and differential geometry. Curated for first-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

Introduction to vectors, covering vector algebra, geometry, products, vector equations of geometries, vector differentiation, integration and their applications to mechanics and differential geometry. Curated for first-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

[FUTA, Akure] MTS 104: Introductory Applied Mathematics
[FUTA, Akure] MTS 104: Introductory Applied Mathematics
This learning track is designed for first-year students at the Federal University of Technology, Akure (FUTA) and aligns with the second-semester coverage of introductory applied mathematics. It opens with vectors—what they are, how they work, and where they show up in real-world problems. From there, you’ll explore the geometry of circles and conic sections, gradually building up to the core ideas in basic dynamics. The lessons are short, clear, and practical—just the way we like it on UniDrills. Everything’s broken down to help you build strong intuition and problem-solving skills, especially if this is your first time engaging with applied math in this form. If you're not a FUTA student, no worries. The structure and explanations are broadly relevant, and the track works just as well for anyone looking to master these foundational topics in science and engineering.

This learning track is designed for first-year students at the Federal University of Technology, Akure (FUTA) and aligns with the second-semester coverage of introductory applied mathematics. It opens with vectors—what they are, how they work, and where they show up in real-world problems. From there, you’ll explore the geometry of circles and conic sections, gradually building up to the core ideas in basic dynamics. The lessons are short, clear, and practical—just the way we like it on UniDrills. Everything’s broken down to help you build strong intuition and problem-solving skills, especially if this is your first time engaging with applied math in this form. If you're not a FUTA student, no worries. The structure and explanations are broadly relevant, and the track works just as well for anyone looking to master these foundational topics in science and engineering.