Eigenvalues, Eigenvectors and Diagonalization of Matrices - Linear Algebra (Undergraduate Advanced)
17 hrs

MTH 202: Mathematical Methods II
Comprehensive treatise of advanced mathematics covering vector calculus, complex numbers, linear vector spaces, linear maps, matrices, eigenvalues and eigenvectors.
Curated for second-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.
MTH 202: Mathematical Methods II
Comprehensive treatise of advanced mathematics covering vector calculus, complex numbers, linear vector spaces, linear maps, matrices, eigenvalues and eigenvectors. Curated for second-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

CHE 305: Engineering Analysis I
Advanced engineering mathematics covering solid analytical geometry, integrals, scalar and vector fields, matrices and determinants and complex variables.
Curated for third-year students of engineering at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.
CHE 305: Engineering Analysis I
Advanced engineering mathematics covering solid analytical geometry, integrals, scalar and vector fields, matrices and determinants and complex variables. Curated for third-year students of engineering at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.

MTH 205: Linear Algebra II
Advanced linear algebra is the mathematical backbone of modern data science, engineering, and physics. This learning track delivers the rigorous MTH 205 curriculum based on NUC CCMAS standards, focusing on sophisticated matrix analysis and practical computational methods critical for solving complex technical problems.
This programme is targeted at undergraduates in mathematics, engineering, and computer science requiring a deep command of advanced matrix theory. It is equally essential for data scientists and engineers seeking a rigorous theoretical foundation for machine learning algorithms, cryptography, and complex system modelling.
You will master matrix manipulations to solve linear systems and compute determinants and inverses efficiently using various methods including software like Python and MATLAB. You will gain competence in determining eigenvalues and eigenvectors, applying diagonalization to analyze the stability of dynamical systems, and working with quadratic and canonical forms. Completion establishes the critical mathematical expertise required for advanced studies in multivariate statistics, differential equations, and algorithmic development.
MTH 205: Linear Algebra II
Advanced linear algebra is the mathematical backbone of modern data science, engineering, and physics. This learning track delivers the rigorous MTH 205 curriculum based on NUC CCMAS standards, focusing on sophisticated matrix analysis and practical computational methods critical for solving complex technical problems. This programme is targeted at undergraduates in mathematics, engineering, and computer science requiring a deep command of advanced matrix theory. It is equally essential for data scientists and engineers seeking a rigorous theoretical foundation for machine learning algorithms, cryptography, and complex system modelling. You will master matrix manipulations to solve linear systems and compute determinants and inverses efficiently using various methods including software like Python and MATLAB. You will gain competence in determining eigenvalues and eigenvectors, applying diagonalization to analyze the stability of dynamical systems, and working with quadratic and canonical forms. Completion establishes the critical mathematical expertise required for advanced studies in multivariate statistics, differential equations, and algorithmic development.
Course Chapters