MTH 202: Mathematical Methods II
Comprehensive treatise of advanced mathematics covering vector calculus, complex numbers, linear vector spaces, linear maps, matrices, eigenvalues and eigenvectors. Curated for second-year students of engineering and physical sciences at Obafemi Awolowo University, Ile-Ife, Nigeria. Students and professionals with similar learning goal will also find this learning track useful.
12
$ 35.72
One-time payment
Learning Track Courses
Calculus of Scalar and Vector FieldsDo you want to learn how to manipulate and analyze scalar and vector fields using advanced calculus techniques? Do you want to understand the concepts and methods of scalar and vector products, gradient, divergence, curl, and Laplacian operators? Do you want to apply the principles of vector analysis to solve problems in physics, engineering, and other disciplines?
If you answered yes to any of these questions, then this course is for you!
In this course, you will learn the fundamentals of calculus of scalar and vector fields, which is the branch of mathematics that deals with functions and operators that map points in space to scalars or vectors. You will learn how to use different notations and conventions to express scalar and vector fields, such as Einstein's summation, Kronecker delta, and Levi-Civita symbols. You will learn how to perform scalar and vector products of vectors, which are useful for measuring angles, areas, and volumes. You will learn how to compute and interpret the gradient of a scalar field, which measures the rate and direction of change of a scalar function. You will learn how to compute and interpret the divergence and curl of a vector field, which measure the sources and vortices of a vector field. You will also learn how to use the Laplacian operator, which combines the divergence and the gradient, and is useful for studying heat conduction, electrostatics, and fluid dynamics.
This course will equip you with the skills and knowledge to solve various problems involving scalar and vector fields. You will be able to apply the concepts and methods of calculus of scalar and vector fields to fields such as physics, engineering, chemistry, biology, and more. You will also be able to appreciate the power of vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, which relate the integrals of scalar and vector fields over different domains.
By the end of this course, you will be able to:
- Define and explain the meaning of scalars, vectors, and tensors
- Identify and use different notations and conventions for scalar and vector fields
- Perform scalar and vector products of vectors and calculate angles, areas, and volumes
- Compute and interpret the gradient of a scalar field and its properties
- Compute and interpret the divergence and curl of a vector field and their properties
- Compute and interpret the Laplacian of a scalar or a vector field and its applications
- Use different coordinate systems and bases to express scalar and vector fields and operators
- Compute and interpret the gradient, divergence, curl, and Laplacian in orthogonal curvilinear coordinates
- Recognize and use some special curvilinear coordinates, such as cylindrical and spherical coordinates
- Apply the vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, to relate the integrals of scalar and vector fields over different domains
Created for students, engineers, scientists, and anyone passionate about learning the calculus of scalar and vector fields, this course assumes a basic background in calculus, linear algebra, and vector algebra. With engaging video lessons, interactive quizzes, practice problems, and supportive peer interactions, you'll embark on a journey of discovery and mastery like never before.
Seize the opportunity to advance your mathematical skills and unlock new problem-solving possibilities with an enrolment right away!
Do you want to learn how to manipulate and analyze scalar and vector fields using advanced calculus techniques? Do you want to understand the concepts and methods of scalar and vector products, gradient, divergence, curl, and Laplacian operators? Do you want to apply the principles of vector analysis to solve problems in physics, engineering, and other disciplines? If you answered yes to any of these questions, then this course is for you! In this course, you will learn the fundamentals of calculus of scalar and vector fields, which is the branch of mathematics that deals with functions and operators that map points in space to scalars or vectors. You will learn how to use different notations and conventions to express scalar and vector fields, such as Einstein's summation, Kronecker delta, and Levi-Civita symbols. You will learn how to perform scalar and vector products of vectors, which are useful for measuring angles, areas, and volumes. You will learn how to compute and interpret the gradient of a scalar field, which measures the rate and direction of change of a scalar function. You will learn how to compute and interpret the divergence and curl of a vector field, which measure the sources and vortices of a vector field. You will also learn how to use the Laplacian operator, which combines the divergence and the gradient, and is useful for studying heat conduction, electrostatics, and fluid dynamics. This course will equip you with the skills and knowledge to solve various problems involving scalar and vector fields. You will be able to apply the concepts and methods of calculus of scalar and vector fields to fields such as physics, engineering, chemistry, biology, and more. You will also be able to appreciate the power of vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, which relate the integrals of scalar and vector fields over different domains. By the end of this course, you will be able to: - Define and explain the meaning of scalars, vectors, and tensors - Identify and use different notations and conventions for scalar and vector fields - Perform scalar and vector products of vectors and calculate angles, areas, and volumes - Compute and interpret the gradient of a scalar field and its properties - Compute and interpret the divergence and curl of a vector field and their properties - Compute and interpret the Laplacian of a scalar or a vector field and its applications - Use different coordinate systems and bases to express scalar and vector fields and operators - Compute and interpret the gradient, divergence, curl, and Laplacian in orthogonal curvilinear coordinates - Recognize and use some special curvilinear coordinates, such as cylindrical and spherical coordinates - Apply the vector analysis theorems, such as Gauss', Green's, and Stokes' theorems, to relate the integrals of scalar and vector fields over different domains Created for students, engineers, scientists, and anyone passionate about learning the calculus of scalar and vector fields, this course assumes a basic background in calculus, linear algebra, and vector algebra. With engaging video lessons, interactive quizzes, practice problems, and supportive peer interactions, you'll embark on a journey of discovery and mastery like never before. Seize the opportunity to advance your mathematical skills and unlock new problem-solving possibilities with an enrolment right away!
Master Complex Numbers - Theory and ApplicationsDo you want to learn how to work with numbers that go beyond the real line? Do you want to understand the concepts of imaginary unit, conjugate, modulus, argument, and polar and exponential forms of complex numbers? Do you want to master the skills of performing algebraic and geometric operations on complex numbers using different methods and tools?
If you answered yes to any of these questions, then this course is for you!
In this course, you will learn how to:
- Define and classify complex numbers and their real and imaginary parts
- Perform addition, subtraction, multiplication, and division of complex numbers using the standard form a + bi
- Find the conjugate, modulus, and argument of a complex number and use them to compare and simplify complex numbers
- Represent complex numbers on the Argand plane and visualize their geometric properties and transformations
- Convert complex numbers from rectangular to polar and exponential forms and vice versa
- Use De-Moivre's theorem and Euler's formula to find the powers and roots of complex numbers in polar and exponential forms
- Use complex numbers to define and manipulate trigonometric and hyperbolic functions and their inverses
- Use complex numbers to define and manipulate logarithmic functions and their properties
- Use complex numbers to graph and solve equations of circles, lines, and other curves on the complex plane
This course is suitable for anyone who wants to learn or review the basics of complex numbers and their applications. It is especially useful for students and professionals in engineering, physics, computer science, cryptography, and other related fields.
By the end of this course, you will have a solid understanding of complex numbers and their operations. You will also be able to apply the knowledge and skills you gain to real-world problems and challenges that involve complex numbers.
Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Do you want to learn how to work with numbers that go beyond the real line? Do you want to understand the concepts of imaginary unit, conjugate, modulus, argument, and polar and exponential forms of complex numbers? Do you want to master the skills of performing algebraic and geometric operations on complex numbers using different methods and tools? If you answered yes to any of these questions, then this course is for you! In this course, you will learn how to: - Define and classify complex numbers and their real and imaginary parts - Perform addition, subtraction, multiplication, and division of complex numbers using the standard form a + bi - Find the conjugate, modulus, and argument of a complex number and use them to compare and simplify complex numbers - Represent complex numbers on the Argand plane and visualize their geometric properties and transformations - Convert complex numbers from rectangular to polar and exponential forms and vice versa - Use De-Moivre's theorem and Euler's formula to find the powers and roots of complex numbers in polar and exponential forms - Use complex numbers to define and manipulate trigonometric and hyperbolic functions and their inverses - Use complex numbers to define and manipulate logarithmic functions and their properties - Use complex numbers to graph and solve equations of circles, lines, and other curves on the complex plane This course is suitable for anyone who wants to learn or review the basics of complex numbers and their applications. It is especially useful for students and professionals in engineering, physics, computer science, cryptography, and other related fields. By the end of this course, you will have a solid understanding of complex numbers and their operations. You will also be able to apply the knowledge and skills you gain to real-world problems and challenges that involve complex numbers. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Linear Algebra: Linear Vector Spaces and Linear MapsDo you want to learn how to work with abstract spaces and transformations that preserve their structure? Do you want to understand the concepts of vector subspaces, linear combinations, linear dependence, basis, dimension, coordinates, and properties of vector spaces? Do you want to master the skills of defining and manipulating linear maps, their kernels, images, matrix representations, and transition matrices?
If you answered yes to any of these questions, then this course is for you!
Linear Algebra: Linear Vector Spaces and Linear Maps is a comprehensive and engaging course that covers the fundamentals of vector spaces and linear maps and their applications in mathematics and science. You will learn how to:
- Define and classify vector spaces and their subspaces over a given scalar field
- Perform operations on vectors using linear combinations and scalar multiplication
- Determine whether a set of vectors is linearly dependent or independent and find a basis and dimension for a vector space or subspace
- Find the coordinates of a vector with respect to a given basis and change the basis using transition matrices
- Define and classify linear maps between vector spaces and find their domains, codomains, ranges, and null spaces
- Find the kernel and image of a linear map and use them to determine whether a linear map is one-to-one or onto
- Represent a linear map using a matrix and perform matrix operations such as addition, multiplication, and inversion
- Use different methods and tools to solve systems of linear equations, such as Gaussian elimination, row reduction, and inverse matrices
This course is suitable for anyone who wants to learn or review the basics of vector spaces and linear maps and their applications. It is especially useful for students and professionals in algebra, geometry, analysis, differential equations, optimization, cryptography, computer graphics, data science, and other related fields.
By the end of this course, you will have a solid foundation of the theory and practice of vector spaces and linear maps and their operations. You will also be able to apply the knowledge and skills you learned to real-world problems and challenges that involve vector spaces and linear maps.
Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Do you want to learn how to work with abstract spaces and transformations that preserve their structure? Do you want to understand the concepts of vector subspaces, linear combinations, linear dependence, basis, dimension, coordinates, and properties of vector spaces? Do you want to master the skills of defining and manipulating linear maps, their kernels, images, matrix representations, and transition matrices? If you answered yes to any of these questions, then this course is for you! Linear Algebra: Linear Vector Spaces and Linear Maps is a comprehensive and engaging course that covers the fundamentals of vector spaces and linear maps and their applications in mathematics and science. You will learn how to: - Define and classify vector spaces and their subspaces over a given scalar field - Perform operations on vectors using linear combinations and scalar multiplication - Determine whether a set of vectors is linearly dependent or independent and find a basis and dimension for a vector space or subspace - Find the coordinates of a vector with respect to a given basis and change the basis using transition matrices - Define and classify linear maps between vector spaces and find their domains, codomains, ranges, and null spaces - Find the kernel and image of a linear map and use them to determine whether a linear map is one-to-one or onto - Represent a linear map using a matrix and perform matrix operations such as addition, multiplication, and inversion - Use different methods and tools to solve systems of linear equations, such as Gaussian elimination, row reduction, and inverse matrices This course is suitable for anyone who wants to learn or review the basics of vector spaces and linear maps and their applications. It is especially useful for students and professionals in algebra, geometry, analysis, differential equations, optimization, cryptography, computer graphics, data science, and other related fields. By the end of this course, you will have a solid foundation of the theory and practice of vector spaces and linear maps and their operations. You will also be able to apply the knowledge and skills you learned to real-world problems and challenges that involve vector spaces and linear maps. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Matrices, Determinants, Eigenvalues and Eigenvectors - Linear AlgebraDo you want to learn how to work with matrices and their properties, operations, and applications? Do you want to understand the concepts of determinants, eigenvalues, eigenvectors, diagonalization, quadratic and canonical forms? Do you want to master the skills of solving systems of linear equations, finding inverses, and computing matrix functions using different methods and tools?
If you answered yes to any of these questions, then this course is for you!
This course covers the fundamentals of matrix theory and its applications in mathematics and science. You will learn how to:
- Define and classify matrices and their special types, such as symmetric, orthogonal, diagonal, and identity matrices
- Perform matrix addition, subtraction, multiplication, and scalar multiplication using the algebraic properties of matrices
- Find the transpose, conjugate, and adjoint of a matrix and use them to simplify matrix operations and expressions
- Perform elementary row and column transformations on matrices and use them to find the row echelon form, reduced row echelon form, rank, and nullity of a matrix
- Find the minors, cofactors, and determinants of matrices and use them to calculate the area, volume, and orientation of geometrical figures
- Find the inverse of a matrix using the adjoint method or the row operations method and use it to solve systems of linear equations
- Find the eigenvalues and eigenvectors of a matrix using the characteristic polynomial and the Cayley-Hamilton theorem and use them to analyze the behavior and stability of dynamical systems
- Diagonalize a matrix using the eigenvalues and eigenvectors and use it to compute matrix functions, such as polynomials, exponentials, sines, and cosines of matrices
- Find the quadratic and canonical forms of an equation using the coefficient matrix and the transformation matrix and use them to classify and graph conics and quadrics
- Use computer software, such as MS-Excel, MATLAB, and Python, to perform matrix operations and computations efficiently and accurately
This course is suitable for anyone who wants to learn or review the basics of matrix theory and its applications. It is especially useful for students and professionals in algebra, calculus, differential equations, linear programming, optimization, cryptography, computer graphics, data science, machine learning, and other related fields.
By the end of this course, you will have a firm grasp of the theory and applications of matrices and determinants. You will also be able to apply the knowledge and skills you gain to solve real-world problems and challenges that involve matrices.
Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.
Do you want to learn how to work with matrices and their properties, operations, and applications? Do you want to understand the concepts of determinants, eigenvalues, eigenvectors, diagonalization, quadratic and canonical forms? Do you want to master the skills of solving systems of linear equations, finding inverses, and computing matrix functions using different methods and tools? If you answered yes to any of these questions, then this course is for you! This course covers the fundamentals of matrix theory and its applications in mathematics and science. You will learn how to: - Define and classify matrices and their special types, such as symmetric, orthogonal, diagonal, and identity matrices - Perform matrix addition, subtraction, multiplication, and scalar multiplication using the algebraic properties of matrices - Find the transpose, conjugate, and adjoint of a matrix and use them to simplify matrix operations and expressions - Perform elementary row and column transformations on matrices and use them to find the row echelon form, reduced row echelon form, rank, and nullity of a matrix - Find the minors, cofactors, and determinants of matrices and use them to calculate the area, volume, and orientation of geometrical figures - Find the inverse of a matrix using the adjoint method or the row operations method and use it to solve systems of linear equations - Find the eigenvalues and eigenvectors of a matrix using the characteristic polynomial and the Cayley-Hamilton theorem and use them to analyze the behavior and stability of dynamical systems - Diagonalize a matrix using the eigenvalues and eigenvectors and use it to compute matrix functions, such as polynomials, exponentials, sines, and cosines of matrices - Find the quadratic and canonical forms of an equation using the coefficient matrix and the transformation matrix and use them to classify and graph conics and quadrics - Use computer software, such as MS-Excel, MATLAB, and Python, to perform matrix operations and computations efficiently and accurately This course is suitable for anyone who wants to learn or review the basics of matrix theory and its applications. It is especially useful for students and professionals in algebra, calculus, differential equations, linear programming, optimization, cryptography, computer graphics, data science, machine learning, and other related fields. By the end of this course, you will have a firm grasp of the theory and applications of matrices and determinants. You will also be able to apply the knowledge and skills you gain to solve real-world problems and challenges that involve matrices. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.