MTH 205: Linear Algebra II

Advanced linear algebra is the mathematical backbone of modern data science, engineering, and physics. This learning track delivers the rigorous MTH 205 curriculum based on NUC CCMAS standards, focusing on sophisticated matrix analysis and practical computational methods critical for solving complex technical problems. This programme is targeted at undergraduates in mathematics, engineering, and computer science requiring a deep command of advanced matrix theory. It is equally essential for data scientists and engineers seeking a rigorous theoretical foundation for machine learning algorithms, cryptography, and complex system modelling. You will master matrix manipulations to solve linear systems and compute determinants and inverses efficiently using various methods including software like Python and MATLAB. You will gain competence in determining eigenvalues and eigenvectors, applying diagonalization to analyze the stability of dynamical systems, and working with quadratic and canonical forms. Completion establishes the critical mathematical expertise required for advanced studies in multivariate statistics, differential equations, and algorithmic development.

42 hrs

Enrolment valid for 12 months

Learning Track Courses

Matrices, Determinants, and Systems of Linear Equations - Linear Algebra (Undergraduate Advanced)
Matrices, Determinants, and Systems of Linear Equations - Linear Algebra (Undergraduate Advanced)
Do you want to learn how to work with matrices and their properties, operations, and applications? Do you want to understand the concepts of determinants, eigenvalues, eigenvectors, diagonalization, quadratic and canonical forms? Do you want to master the skills of solving systems of linear equations, finding inverses, and computing matrix functions using different methods and tools? If you answered yes to any of these questions, then this course is for you! This course covers the fundamentals of matrix theory and its applications in mathematics and science. You will learn how to: - Define and classify matrices and their special types, such as symmetric, orthogonal, diagonal, and identity matrices - Perform matrix addition, subtraction, multiplication, and scalar multiplication using the algebraic properties of matrices - Find the transpose, conjugate, and adjoint of a matrix and use them to simplify matrix operations and expressions - Perform elementary row and column transformations on matrices and use them to find the row echelon form, reduced row echelon form, rank, and nullity of a matrix - Find the minors, cofactors, and determinants of matrices and use them to calculate the area, volume, and orientation of geometrical figures - Find the inverse of a matrix using the adjoint method or the row operations method and use it to solve systems of linear equations - Find the eigenvalues and eigenvectors of a matrix using the characteristic polynomial and the Cayley-Hamilton theorem and use them to analyze the behavior and stability of dynamical systems - Diagonalize a matrix using the eigenvalues and eigenvectors and use it to compute matrix functions, such as polynomials, exponentials, sines, and cosines of matrices - Find the quadratic and canonical forms of an equation using the coefficient matrix and the transformation matrix and use them to classify and graph conics and quadrics - Use computer software, such as MS-Excel, MATLAB, and Python, to perform matrix operations and computations efficiently and accurately This course is suitable for anyone who wants to learn or review the basics of matrix theory and its applications. It is especially useful for students and professionals in algebra, calculus, differential equations, linear programming, optimization, cryptography, computer graphics, data science, machine learning, and other related fields. By the end of this course, you will have a firm grasp of the theory and applications of matrices and determinants. You will also be able to apply the knowledge and skills you gain to solve real-world problems and challenges that involve matrices. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.

Do you want to learn how to work with matrices and their properties, operations, and applications? Do you want to understand the concepts of determinants, eigenvalues, eigenvectors, diagonalization, quadratic and canonical forms? Do you want to master the skills of solving systems of linear equations, finding inverses, and computing matrix functions using different methods and tools? If you answered yes to any of these questions, then this course is for you! This course covers the fundamentals of matrix theory and its applications in mathematics and science. You will learn how to: - Define and classify matrices and their special types, such as symmetric, orthogonal, diagonal, and identity matrices - Perform matrix addition, subtraction, multiplication, and scalar multiplication using the algebraic properties of matrices - Find the transpose, conjugate, and adjoint of a matrix and use them to simplify matrix operations and expressions - Perform elementary row and column transformations on matrices and use them to find the row echelon form, reduced row echelon form, rank, and nullity of a matrix - Find the minors, cofactors, and determinants of matrices and use them to calculate the area, volume, and orientation of geometrical figures - Find the inverse of a matrix using the adjoint method or the row operations method and use it to solve systems of linear equations - Find the eigenvalues and eigenvectors of a matrix using the characteristic polynomial and the Cayley-Hamilton theorem and use them to analyze the behavior and stability of dynamical systems - Diagonalize a matrix using the eigenvalues and eigenvectors and use it to compute matrix functions, such as polynomials, exponentials, sines, and cosines of matrices - Find the quadratic and canonical forms of an equation using the coefficient matrix and the transformation matrix and use them to classify and graph conics and quadrics - Use computer software, such as MS-Excel, MATLAB, and Python, to perform matrix operations and computations efficiently and accurately This course is suitable for anyone who wants to learn or review the basics of matrix theory and its applications. It is especially useful for students and professionals in algebra, calculus, differential equations, linear programming, optimization, cryptography, computer graphics, data science, machine learning, and other related fields. By the end of this course, you will have a firm grasp of the theory and applications of matrices and determinants. You will also be able to apply the knowledge and skills you gain to solve real-world problems and challenges that involve matrices. Once enrolled, you have access to dynamic video lessons, interactive quizzes, and live chat support for an immersive learning experience. You engage with clear video explanations, test your understanding with instant-feedback quizzes and interact with our expert instructor and peers in the chat room. Join a supportive learning community to exchange ideas, ask questions, and collaborate with peers as you master the material, by enrolling right away.

Eigenvalues, Eigenvectors and Diagonalization of Matrices - Linear Algebra (Undergraduate Advanced)
Eigenvalues, Eigenvectors and Diagonalization of Matrices - Linear Algebra (Undergraduate Advanced)
This course provides a clear and structured exploration of eigenvalues, eigenvectors, and diagonalization, focusing on both theory and real-world applications. You’ll learn how to compute eigenvalues and eigenvectors, understand their geometric significance, and apply diagonalization to simplify complex matrix operations. Topics include linear transformations, dynamical systems, and applications in physics, engineering, and machine learning. The course is designed for students, engineers, and data scientists seeking a strong foundation in matrix methods. By the end, you'll confidently apply these concepts in problem-solving and computational modeling.

This course provides a clear and structured exploration of eigenvalues, eigenvectors, and diagonalization, focusing on both theory and real-world applications. You’ll learn how to compute eigenvalues and eigenvectors, understand their geometric significance, and apply diagonalization to simplify complex matrix operations. Topics include linear transformations, dynamical systems, and applications in physics, engineering, and machine learning. The course is designed for students, engineers, and data scientists seeking a strong foundation in matrix methods. By the end, you'll confidently apply these concepts in problem-solving and computational modeling.